
Advanced Technology Research

Quixote: A Cookbook

Revision 0.4

June 20, 2005

©Copyright 2005,NORTEL . Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts.

Document prime: Chris Hobbs
Document Number: Zig05-0006
Contributors: John Bell

Contents

1 Introduction 2
1.1 This Document . 2
1.2 More Information. 2
1.3 Updates. 3
1.4 Disclaimer. 3

2 A Quixotic Survey 4

3 The Quixotic Core 5
3.1 General Structure. 5
3.2 URI Mapping to Methods. 5
3.3 The Publisher. 7
3.4 Configuration. 8

4 Widget and Form Classes 10
4.1 Widget Classes. .10
4.2 Form Class .12

5 The Python Templating Language 16

A Sequence of Events 19

B Example 22
B.1 Creating a Root Directory Instance. 22
B.2 Creating a Publisher Instance. 26
B.3 Running Quixote .27

C Licence 29

Nortel 1 Quixote: A Cookbook, Revision 0.4

CHAPTER 1

Introduction

1.1 This Document

Quixote is a web application framework written in Python and this document is intended for
programmers coming fresh to Quixote without much (or any) knowledge or understanding
of it. It doesnot specifically address the needs of programmers familiar with earlier ver-
sions of Quixote who need to upgrade their software.

Information about, and the source for, Quixote can be found athttp://www.
mems-exchange.org/software/quixote/ and http://quixote.ca/. Unfortunately,
in getting to grips with Quixote, I found the code good and the documentation of such
a standard that I spent a lot of time reading code. In particular it came as a surprise to find
that the latest documentation of theForm class apparently aligned with the previous gener-
ation of theForm class code. This is the document that I wish had existed when I started to
read the code.

This document addresses version 2.0 of the Quixote code and incorporates useful
changes and corrections suggested by Mike Orr and Larry Tjoelker in emails to the Quixote
mailing list http://mail.mems-exchange.org/mailman/listinfo/quixote-users
dated 9th June 2005.

1.2 More Information

Other Quixote tutorials exist (e.g., http://darcs.idyll.org/~t/projects/
quixote2-tutorial/) and the reader is advised to explore them all. My only crit-
icism of many of the explanations and tutorials that I read when trying to get to grips with
Quixote was that they often referred to version 1.0 of the program and the upgrade to
version 2.0 was not made in a backwards-compatible manner.

Nortel 2 Quixote: A Cookbook, Revision 0.4

http://www.mems-exchange.org/software/quixote/
http://www.mems-exchange.org/software/quixote/
http://quixote.ca/
http://mail.mems-exchange.org/mailman/listinfo/quixote-users
http://darcs.idyll.org/~t/projects/quixote2-tutorial/
http://darcs.idyll.org/~t/projects/quixote2-tutorial/

1.3 Updates 3

1.3 Updates

This document has been prepared using LATEXand is issued in pdf format. If anyone wishes
to update the document to correct or enhance it then they should send an email to Chris
Hobbs (cwlh@nortel.com) to get access to the source. Any suggestions about improvement
would also be welcome to the same address.

1.4 Disclaimer

I am not a member of the Quixote design and development team and so the information
given in this document may be wrong. All I can say is that it worked for me.

Nortel Quixote: A Cookbook, Revision 0.4

CHAPTER 2

A Quixotic Survey

Quixote has a number of effectively independent components:

• a mechanism for tying a URI entered by a user into a browser with a particular Python
method, the method being invoked when the URI is entered. Quixote assumes an
underlying architecture where the application logic is independent of the browser
interface and this component of Quixote ties the two together. This mechanism is
described in section3 starting on page5.

• a library of functions to assist with the creation of the HTML for common screen
widgets (text boxes, radio buttons, etc.) and the extraction of data entered by the user
into those widgets. For information about this library see section4.1starting on page
10.

• a library of functions to assist with the creation and analysis of an HTML form: in-
terspersing widgets with other layout information. For information about this library
see section4.2starting on page12.

• an extension to the Python language, known as the Python Template Language (PTL),
which makes it slightly more convenient to generate HTML. This language is de-
scribed in section5 starting on page16.

These components can be used independently or together.

Nortel 4 Quixote: A Cookbook, Revision 0.4

CHAPTER 3

The Quixotic Core

3.1 General Structure

Figure 3.1 illustrates the components of a system containing Quixote. There are other
ways of using Quixote (see, for example, reference [WHIT]), particularly in an embedded
environment where a full Apache-like web server would be inappropriate. In the remainder
of this document the structure shewn in figure3.1 is assumed.

The steps in programming a Quixote application are:

1. define a class (called aDirectory) which describes the linkage between URLs selected
by a user and the code fragments. This step is described in section3.2and an example
is given in appendixB.1.

2. define a class (called aPublisher) which describes some of the configuration of the
system (where to put log files, how to handle debug messages from the application,
etc.) and encompasses an instance of theDirectory class described above. This step
is described in section3.4and an example is given in appendixB.1.

3. write a program (perhaps a CGI script) which does little else other than create and
execute an instance of thePublisherclass. This step is described in section3.3below
and an example is given in appendixB.2.

4. write the application code (in Python or PTL). An example of such code is given in
appendixB.1,

3.2 URI Mapping to Methods

One of the key building blocks of Quixote is the link between a URI typed by the user
into his or her browser and the piece of code which needs to be invoked when that URI is

Nortel 5 Quixote: A Cookbook, Revision 0.4

6 The Quixotic Core

Browser

Web Server
(e.g., Apache)

Quixote

Python and PTL
programs

HTTP

Local Socket
Connexion

(SCGI or CGI)

Figure 3.1: Quixote Architecture

accessed.
Creating this link is achieved by creating an instance of aDirectoryclass which supports

a number of methods. This instance is then passed as a parameter to aPublisher as
described in section3.3.

The Quixote release includes the classDirectory in the filedirectory.py and this
provides a skeleton which may be copied and extended or which may be used as a super-
class.

The methods and properties which need to be instantiated are:

_q_exportsThis is a list of strings or tuples specifying which methods are to be externally
visible for use in URIs. For example, the list:

_q_exports = ["doit1", "doit2", ("externalName", "doit3")]

indicates thatdoit1 in a URI should cause the methoddoit1() to be invoked,doit2
in a URI should cause the methoddoit2() to be invoked andexternalName in a
URI should cause the methoddoit3() to be invoked. If_q_exports contains an
empty string then this is interpreted as an implicit("", "_q_index") tuple so that
incoming references without a explicit path result in_q_index() being invoked.

_q_lookup(self, component)This method can be used to create URIs dynamically since
it is called by Quixote to resolve a URI entered at the browser. It would typically
return an instance of a Directory but could also return a method or even a string.

This method could, for example, be used to “create” a web page for each mem-
ber of the current (May 2005) English Cricket Team. While it would be possi-
ble to create a genuine page for each of Vaughan, Bell, Flintoff, Giles, Harmison,

Quixote: A Cookbook, Revision 0.4 Nortel

3.3 The Publisher 7

Hoggard, Jones (Geraint), Jones (Simon), Lewis, Strauss, Thorpe and Trescoth-
ick, it would also be possible construct URIs such ashttp://prefix/vaughan,
http://prefix/bell, http://prefix/trescothick and intercept the call using
_q_lookup. This method would be passed the component (“vaughan”, “bell”, etc.)
and could return a dynamically-created Directory which has collected information
about the particular player.

There is no end to the fun which can be had here: it would for example, as sug-
gested by Larry Tjoelker, be possible to create “pages” with URLs comparing the
performance of two players such ashttp://prefix/lewis/hoggard. It is this flex-
ibility which makes it important to select a URL structurebeforebeginning to write
a Quixote application—advice which comes from hard experience in my case.

An example of this is given in the Quixote distribution inQuixote-2.0/-
demo/extras.ptl which usesQuixote-2.0/demo/integers.ptl to “create” a
web page for every (positive) integer. Not as much fun as the English Cricket Team
but a useful example nevertheless.

3.3 The Publisher

In the same way that two versions of theForm class exist (see page12), version 2.0 of
Quixote comes with two versions of thePublisher class:publish.py andpublish1.py.
The later of these ispublish.py and that is the one discussed here.

The Publisher class has a constructor with the following signature:

def __init__(self,
root_directory,
logger=None,
session_manager=None,
config=None,
**kwargs)

where:

root_directory is an instance of a class as described in section3.2.

logger gives an instance of aLogger object. If none is given then aDefault_Logger as
defined inlogger.py is used.

session_managergives an instance of aSessionManager object as defined in
session.py. Such a manager is responsible for creating sessions, setting and reading
session cookies, maintaining the collection of all sessions, and so forth. There is one
SessionManager instance per Quixote process. If no manager is specified then a null
session manager is used. This supports memory-based sessions.

Nortel Quixote: A Cookbook, Revision 0.4

http://prefix/vaughan
http://prefix/bell
http://prefix/trescothick
http://prefix/lewis/hoggard

8 The Quixotic Core

config gives an instance of aConfig object as defined inconfig.py. As described in
section3.4 below,either a Config objector the kwargs may be given to define the
configuration variables listed in table3.1but not both.

kwargs specify the configuration parameters (see section3.4below.

An instance of the Publisher class is created to handle each “transaction”: i.e., when
using plain CGI, the instance will handle exactly one HTTP request and then be destroyed,
when using FastCGI, then the instance will handle every HTTP request handed to that
driver script process.

Once created, the Publisher exports a number of methods:

log(msg)to write a message to the log system.

The Quixote system is started by making a call to

quixote.server.cgi_server.run()

passing it the constructor for the Publisher.

3.4 Configuration

Configuration of the Quixote system is handled by a class calledConfig and the parameters
listed in table3.1 are supported. The values of these parameters may be set by passing a
Config instance to the Publisher’s constructor or by using thekwargs parameter.

3.4.1 Quixote Versions and Backward Compatibility

In addition to the publish.py, publish1.py, publish2.py and the form.py,
form1.py, form2.py confusion described in other sections, there have been other non-
backward compatible changes made in Quixote and, in many cases, the documentation and
examples have not kept up with the changes. The Quixote 2.0 release is, however, accom-
panied by a file describing the necessary code changes which need to be made to earlier
code to make it work with Quixote 2.0:upgrading.txt in thedoc directory.

You may find examples set up for earlier versions of Quixote which have items now
unsupported:

• in earlier versions of the Publisher code there was also a methodread_config()
which allowed a configuration to be read from a file. This method no longer exists.

• in earlier versions of the configuration there was a parameterDEBUG_LOG. This is no
longer supported—debug information now always goes to the error log.

Quixote: A Cookbook, Revision 0.4 Nortel

3.4 Configuration 9

Parameter Default Meaning

ERROR_EMAIL None E-mail address to which to send application
errors

ACCESS_LOG None Filename for writing the Quixote access log
ERROR_LOG None Filename for logging error messages and de-

bugging output. IfNone, everything is sent to
stderr

DISPLAY_EXCEPTIONS None Controls what’s done when uncaught excep-
tions occur. If set to ‘plain’, the traceback will
be returned to the browser in addition to being
logged, If set to ‘html’ and the cgitb module is
installed, a more elaborate display will be re-
turned to the browser, showing the local vari-
ables and a few lines of context for each level
of the traceback. If set to None, a generic er-
ror display, containing no information about
the traceback, will be used.

COMPRESS_PAGES False Compress large pages using gzip if the client
accepts that encoding

FORM_TOKENS False If true, then a cryptographically secure token
will be inserted into forms as a hidden field.
The token will be checked when the form is
submitted. This prevents cross-site request
forgeries (CSRF). It is off by default since
it doesn’t work if sessions are not persistent
across requests.

SESSION_COOKIE_NAME “QX_session" Name of the cookie that will hold the session
ID string

SESSION_COOKIE_DOMAIN None Domain to which the session cookie is re-
stricted.

SESSION_COOKIE_PATH None
MAIL_FROM None Default for the "From" header and the SMTP

sender for all outgoing e-mail. Required if
sending email otherwise system will crash.

MAIL_SERVER “localhost" Mail server configured to relay outgoing
emails

MAIL_DEBUG_ADDR None If set, then all e-mail will actually be sent to
this address rather than the intended recipi-
ents. This should be a single, bare e-mail ad-
dress.

Table 3.1: Configuration Parameters

Nortel Quixote: A Cookbook, Revision 0.4

CHAPTER 4

Widget and Form Classes

The two classes described in this chapter are not essential to the Quixote operation: they
are convenience classes for creating the HTML of widgets and forms and extracting the
information entered by the user.

4.1 Widget Classes

The classes which inherit from Widget are illustrated in figure4.1. These are
mostly self-explanatory (and, with the exception ofFloatWidget, IntWidget,
OptionSelectWidget andListWidget, all non-abstract classes map directly to HTML
elements).

Basically these classes are just convenience functions which obviate the need for man-
ual production of the HTML for the various widgets and manual analysis of the results
when the user has entered data.

The Widget class defines a functionrender() which returns the HTML for the widget
as illustrated here (linebreaks in the output have been added for the reader’s convenience
and do not actually occur):

bash-2.05b$ python
Python 2.3.5 (#2, Mar 26 2005, 17:32:32)
[GCC 3.3.5 (Debian 1:3.3.5-12)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import quixote
>>> from quixote.form import widget
>>> x = widget.StringWidget(’name’, size=20)
>>> print x.render()
<div class="StringWidget widget">

Nortel 10 Quixote: A Cookbook, Revision 0.4

4.1 Widget Classes 11

Widget
+name: string

+value: any

+error: string

+title: string

+hint: string

+required: boolean

+attrs: {string : any}

+set_name(name:string)

+set_value(value:any)

+clear()

+render(): string

+parse(request:HTTPRequest): any

+set_error(error:string)

+clear_error()

+set_title(title:string)

+set_hint(hint:string)

StringWidget

TextWidget
CheckBoxWidgetSelectWidget

HiddenWidget

CompositeWidget

PasswordWidget NumberWidget

FloatWidget IntWidget

SingleSelectWidget

MultipleSelectWidget

RadiobuttonsWidget OptionSelectWidget

FileWidget

WidgetList WidgetDict

ButtonWidget

SubmitWidget

ResetWidget

Figure 4.1: Widget Classes

<div class="content">
<input type="text" name="name" size="20" />

</div>
</div>
<br class="StringWidget widget" />

Each widget has a number of attributes stored with it and these may be set and changed
as required. Generally they form part of the HTML generated on a call torender():

• an error string. This is typically displayed close to the field and contains details of an
error condition. It is set by calling theset_error(error : string) method and
cleared by callingclear_error.

• a title string. This is typically displayed close to the field and contains a title for the
field. It is set by calling theset_title(title : string)

Nortel Quixote: A Cookbook, Revision 0.4

12 Widget and Form Classes

• a hint string. This is typically displayed when the user passes the cursor over the field.
It is set by calling theset_hint(title : string)

The use of these functions is illustrated in the exchange below (again, line-breaks in the
output have been artificially inserted):

bash-2.05b$ python
Python 2.3.5 (#2, Mar 26 2005, 17:32:32)
[GCC 3.3.5 (Debian 1:3.3.5-12)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import quixote
>>> from quixote.form import widget
>>> x = widget.StringWidget(’name’, size=20)
>>> x.set_error("This is the error string")
>>> x.set_title("This is the title string")
>>> x.set_hint("This is the hint")
>>> print x.render()
<div class="StringWidget widget">
<div class="title">
This is the title string

</div>
<div class="content">
<input type="text" name="name" size="20" />
<div class="hint">

This is the hint
</div>
<div class="error">

This is the error string
</div>

</div>
</div>
<br class="StringWidget widget" />

4.2 Form Class

If you have just downloaded version 2 of Quixote and do not intend to look at older doc-
umentation and examples, then the remainder of this paragraph can be ignored. In fact,
trying to get to grips with version 2, I found that I needed this explanation. There are
actually two Form libraries and their designation has changed throughout the history of
Quixote:

• in the beginning there wasForm

Quixote: A Cookbook, Revision 0.4 Nortel

4.2 Form Class 13

• then a second, replacement library was created, calledForm2, andForm andForm2
coëxisted.

• then, with the move to Quixote release 2.0,Form was renamed toForm1 andForm2
was renamed toForm.

This document assumes that the later library is being used.
The Form class represents a form as presented to, and completed by, the user. It has the

following attributes:

• the widgets (other than subclasses ofSubmitWidget or HiddenWidget) which
should appear on the screen, held in as a list of widgets inself.widgets.

• the widgets subclassed fromSubmitWidget which are held as a list of widgets in
self.submit_widgets.

• the widgets subclassed fromHiddenWidget which are held as a list of widgets in
self.hidden_widgets.

• the names of the widgets held as a dictionary containing entries of the form { name :
widget } in self._names.

The constructor of a Form has the signature:

def __init__(self,
name=None,
method="post",
action_url=None,
enctype=None,
use_tokens=True,
**attrs):

where:

name is the HTML name of the form

method is "post" or "get"

action_url is the URL of the method that will action the form

encType must be "application/x-www-form-urlencoded" or "multi-
part/form-data"

use_tokensis a Boolean and, if set toTrue, indicates that a unique token should be
generated for each form. This prevents many cross-site attacks and prevents a form
from being submitted twice.

Nortel Quixote: A Cookbook, Revision 0.4

14 Widget and Form Classes

attr contains other keyword arguments for conversion to additional HTML attributes in
the<form> tag.

If the parameter is not given, thenForm.__init__() tries to set it to

{ ‘class’: ‘quixote’ }

to set the CSSclass attribute. Indeed, if the parameteris set but does not contain
the key “class” then this entry is added to the parameter.1 For information about
such attributes (and theclass attribute in particular), see section 7.5.2 of the W3C
document which can be found athttp://www.w3.org/TR/REC-html40/struct/
global.html#adef-class

1As of June 2005, this is recognised as a bug inForm.__init__—the class attribute cannot, in fact, be set.

Quixote: A Cookbook, Revision 0.4 Nortel

http://www.w3.org/TR/REC-html40/struct/global.html#adef-class
http://www.w3.org/TR/REC-html40/struct/global.html#adef-class

4.2 Form Class 15

Method Parameter Notes

is_submitted returns True if the form has been submitted by the
user

has_key name returns True if the named widget is in the form
get name returns the value of the named widget or value of the

default parameter if widget does not exist
default=None

get_widget name return the named widget or None if widget doesn’t
exist

get_submit_widgets return a list of the submit widgets
get_all_widgets return a list of all the widgets
set_error widget name set the error display for a particular widget

error message
has_errors cause the widgets to parse themselves and return

True if any has an error
clear_errors cause all the widgets to parse themselves and clear

any outstanding errors (see also set_error)
get_submit get the name of the submit button which was used to

submit the form. If the form is submitted but not by
a known submit button then True is returned.

add widget_class create a new widget and add it to the class. wid-
get_class is the widget’s class

name name of the widget.
*args arguments for creating widget.
**kwargs arguments for creating widget.

add_***** name call add() for a ****Widget
value=None
**kwargs

render render the form as an HTML string

Table 4.1: Useful Form Methods

Nortel Quixote: A Cookbook, Revision 0.4

CHAPTER 5

The Python Templating Language

PTL is a variant of Python designed to make the preparation of HTML a little easier. PTL
files are compiled into standard Python.pyc files. Once in this form, files which originated
as PTL can be used as if they had originated from normal Python code.

If PTL is to be used without pre-compilation then a call must be made to
quixote.enable_ptl() as illustrated in sectionB.3.

A PTL function is identified by having[plain] or [html] inserted into the function
definition as shewn inLogin.ptl in appendixB.1 on starting on page22:

def success [html] ():
widgets = self.form.get_all_widgets()
for widget in widgets:

print widget,widget.parse()
’<html>’
’<head><title>Nortel Community Network</title>’
’</head>’
’<body>’
’<h1>Thanks, that looks good’

Basically, the difference between a normal Python function and a PTL function is that,
instead of discarding unassigned expressions, it appliesstr() to them1 and appends them
to a string which forms the return value from the function.

Thus instead of writing:

def doit(x,y):
ans = "The sum is %d" % (x+y)
return ans

1actually it’s a lot cleverer than that but this is a useful simplification

Nortel 16 Quixote: A Cookbook, Revision 0.4

17

the function can simply be written:

def doit [plain] (x,y):
"The sum is %d" % (x+y)

The only exception to this rule is expressions (normally function calls) which resolve
to None. None is not appended to the returned value.

The difference between using[plain] and[html] is that, when[html] is used, spe-
cial HTML characters are correctly escaped (e.g., & becomes &). Note that this sub-
stitution only occurs with strings given to a function as a parameter, global variables, global
variables, return values, etc—anything that’s not a literal (it is assumed that these are the
dangerous strings since they may be being used by an external attacker as a “cross-site
scripting” bug). This example illustrates the principle:

Python 2.3.5 (#2, Feb 9 2005, 00:38:15)
[GCC 3.3.5 (Debian 1:3.3.5-8)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from quixote import enable_ptl
>>> enable_ptl()
>>> import tryit
>>> x = ’Here is <HEAD> some "text"’
>>> print x
Here is <HEAD> some "text"
>>> tryit.doit(x)
<htmltext ’abcdHere is <HEAD> some "text"a&b<>xyz’>

where thetryit.ptl file contains:

def doit [html] (x):
"abcd%s" % x
"a&b<>"
"xyz"

Note that the less-than and greater-than signs passed into the functiondoit() are correctly
escaped to< and> but that the less-than, greater-than and ampersand built into the
doit() function are not escaped.

If tryit.ptl were precompiled totryit.pyc then the above example can be simpli-
fied to:

Python 2.3.5 (#2, Feb 9 2005, 00:38:15)
[GCC 3.3.5 (Debian 1:3.3.5-8)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tryit
>>> x = ’Here is <HEAD> some "text"’

Nortel Quixote: A Cookbook, Revision 0.4

18 The Python Templating Language

>>> print x
Here is <HEAD> some "text"
>>> tryit.doit(x)
<htmltext ’abcdHere is <HEAD> some "text"a&b<>xyz’>

Quixote: A Cookbook, Revision 0.4 Nortel

APPENDIX A

Sequence of Events

Analysing the sequence of events when a request is received and processed by Quixote is
not trivial (and it varies depending on the type of session being used, etc.). This appendix
gives a summary of a very simple interaction wherein a user at a browser requests a par-
ticular URI, is returned a form to complete, submits the form and the fields are checked in
some way.

Refer to figureA.1 when reading this sequence.

1. The browser requests a particular URI from the web server, assumed here to be
Apache.

2. Apache knows nothing of Quixote and does its normal action of translating the URL
into a path and invoking the cgi script on the path, here assumed to bevillage.cgi.

3. village.cgi passes the function to create an instance of the project-specific
Publisher class to Quixote by callingrun() with the function as a parameter.

4. Quixote, running in the context ofvillage.cgi, invokes the function and creates an
instance of the project-specificPublisher class. This class instance creates project-
specific instances of theDirectory class and theConfig class containing respec-
tively information about linking URIs to modules and details of how logging should
occur, etc.

5. Using the publisher, Quixote invokes the class which will create the HTML for the
form to be displayed to the user (here assumed to beLogin.ptl).

6. Login.ptl creates an instance of theForm class butLogin.ptl is, at this time, un-
aware of whether it has been called to process the user’s input into the form or, as
here, to present the form to the user.

Nortel 19 Quixote: A Cookbook, Revision 0.4

20 Sequence of Events

7. Login.ptl invokes theis_submitted() function on the created form to determine
whether or not the form has been completed. This strikes this programmer as an un-
usual invocation:Login.ptl has just created the form instance and, strictly speaking,
that form instance can have no idea of whether “it” has been filled in by the user.

8. The form object uses the publisher to determine whether or not the request from the
user contained a completed form with the appropriate fields and finds that it did not.
The form object therefore returns fromis_submitted() with a value of False.

9. Knowing that it has been invoked by an original request from the user,Login.ptl in-
vokes therender() function on the form to generate the HTML necessary to display
the form to the user. This HTML is passed back to Apache by Quixote and control is
returned tovillage.cgi which exits.

10. Apache sends the HTML to the originating browser which displays it for the user.

11. Note that, at this point, no state is being held on the server.

12. The user completes the fields in the form (e.g., name and password) and sends the
information back to the same URL.

13. Steps2 to 7 occur again but this time the call tois_submitted() returns True to
indicate that the form has been completed by the user.

14. Login.ptl retrieves the entered values from the form and checks them for correct-
ness. Assume that the password is, in fact, not correct.

15. Login.ptl sets an error message against the widget holding the password and again
renders the form into HTML.

16. The form, together with error message, is sent back to the user for correction and the
process starts again at step12.

Quixote: A Cookbook, Revision 0.4 Nortel

21

Browser Apache village.cgi Quixote Login.ptl

request

run()

creates
publisher

creates form
renders form

HTML for
form destroys

publisher

returns from
call to run()

HTML for
form

user
completes
form

submitted
form

run()

creates
publisher

creates form
examines input
sets error msg

renders form

returns from
call to run()

HTML for
form

Exits

Exits

Figure A.1: Example Interaction

Nortel Quixote: A Cookbook, Revision 0.4

APPENDIX B

Example

This appendix contains the code required to display a simple form (username and password)
to a web browser and accept and verify the information entered by the user. It is assumed
that there is a simple text file, calledpasswords.txt which contains a list of names and
md5-encrypted passwords, separated by a colon. For example,

Python:1ab$flouUiJtpLHNgkgpN7JR60
cwlh:1ab$5RYdb3usKBFXhbyJEtl7U.

defines two users (Pythonandcwlh) with their associated (encrypted) passwords.
The remaining sections in this appendix give sample code laid out in the same order as

defined in section3.1on page5.

B.1 Creating a Root Directory Instance

The code for a simple directory instance is given below. As the comment on myDirec-
tory says, for pedagogical reasons the code has been split betweenmyDirectory.py and
Login.ptl. Obviously, the application code inLogin.ptl which actually checks the en-
tered username and password is not useful for understanding Quixote but it is included here
to ensure that this example contains all of the code necessary for a working system.

#!/usr/bin/python

**
module myDirectory.py
purpose definition of the mapping from URI to
method xxxxxxxxxxxxxxxxxxx
note for pedagogical reasons this file has

Nortel 22 Quixote: A Cookbook, Revision 0.4

B.1 Creating a Root Directory Instance 23

been split into two: Login.ptl
contains the other part of the
script
author chris hobbs
written april 2005
**

import quixote
from quixote.directory import Directory

import Login

class myDirectory(Directory):
_q_exports = [’’, ’hello’, ’login’]

def _q_index(self):
return ’’’<html>

<body>Welcome to Chris’ Demo. Here is a
link.
</body>

</html>
’’’

def hello(self):
return ’<html><body>Hello world!</body></html>’

login = Login.LoginDirectory()

#!/usr/bin/python

**
module Login.ptl
purpose ptl code for the login screen
for xxxxxxxxxxxxxxxxx
author chris hobbs
written april 2005
**

import time
import string
import md5crypt
import quixote

Nortel Quixote: A Cookbook, Revision 0.4

24 Example

from quixote.directory import Directory
from quixote.directory import Resolving
from quixote.form import widget
from quixote.form import Form
from quixote.form import StringWidget
from quixote.form import PasswordWidget
from quixote.form.css import BASIC_FORM_CSS

**
class LoginDirectory
purpose display the prompts for a username and
password
**

class LoginDirectory(Resolving, Directory):

_q_exports = [’’, ’login’, ’handleInput’]

def _q_index [html] (self):

**
method render
purpose write out the HTML for the login
screen
**

def render [html] ():
’<html>’
’ <HEAD>’
’ <TITLE>Zigamorph Configuration</TITLE>’
’ </HEAD>’
’ <BODY BGCOLOR = white>’
’ <CENTER>’
’ <H1>Nortel xxxxxxxxx Network ’
’ </H1>’
’ <P>’
’ <H3>Welcome to the configuration interface. <H3>’
’ <P> <H3>Please enter your username and password below</H3>’
’ <FORM METHOD = post>’
self.form.get_widget(’name’).render()
self.form.get_widget(’password’).render()

Quixote: A Cookbook, Revision 0.4 Nortel

B.1 Creating a Root Directory Instance 25

’ <P>’
self.form.get_widget("ok").render()
’ </FORM>’
’ </CENTER>’
’ </BODY>’
’</HTML>’

**
method success
purpose handle the condition whereby the
user typed in a valid password
**

def success [html] ():
widgets = self.form.get_all_widgets()
for widget in widgets:

print widget,widget.parse()
’<html>’
’<head><title>Nortel Community Network</title>’
’</head>’
’<body>’
’<h1>Thanks, that looks good’

**
method checkPassword
purpose check whether a given
username/password combination is
valid
input username
password
output True if the combination is valid,
False otherwise
**

def checkPassword(userid, passwd):
if there is already someone logged in (and their
session hasn’t timed out) then the password might
as well be bad because we’re not going to let them in

passwd_file = open(’passwords.txt’, ’r’)
allPasswords = passwd_file.readlines()

Nortel Quixote: A Cookbook, Revision 0.4

26 Example

passwd_file.close()
for password in allPasswords:

combo = string.split(password, ":")
if userid == combo[0]:

encrypted_pw = md5crypt.unix_md5_crypt(passwd, ’ab’)
if encrypted_pw[0:20] == combo[1][0:20]:

return True
return False

**
Mainline code for this form
**

We don’t know whether we’re here to render (display)
the form or to check the input entered by the user.
Either way, we’ll need the form so we’ll create it.

self.form = Form(enctype="application/x-www-form-urlencoded")
self.form.add(StringWidget, "name", title="Name",

size=20, required=True)
self.form.add(PasswordWidget, "password", title="Password",

size=20, maxlength=20, required=True)
self.form.add_hidden(’time’, value=time.time())
self.form.add_submit("ok")

if not self.form.is_submitted() or self.form.has_errors():
return render()

else:
if checkPassword(self.form.get_widget(’name’).parse(),

self.form.get_widget(’password’).parse()):
return success()

else:
self.form.set_error(’password’,"Invalid Username/Password")
return render()

B.2 Creating a Publisher Instance

#!/usr/bin/python

**

Quixote: A Cookbook, Revision 0.4 Nortel

B.3 Running Quixote 27

module myPublisher.py
purpose definition of the publisher for the
xxxxxxx system
author chris hobbs
written april 2005
**

import quixote
from quixote.publish import Publisher
from quixote.config import Config

import myDirectory

def createPublisher():

define our configuration

conf = Config(display_exceptions=’plain’,
access_log = ’access.txt’,
error_log = ’error.txt’)

Create a directory instance

directory = myDirectory.myDirectory()

and then create our publisher

pub = Publisher(directory,config=conf)

return pub

B.3 Running Quixote

When the classes have been defined for a publisher and directory, then Quixote can be run.
Sample code to make this happen is given below.

The only real point to notice is the call toenable_ptl() which is the call which allows
PTL programs to be run in the Python environment.

#!/usr/bin/python

Nortel Quixote: A Cookbook, Revision 0.4

28 Example

**
module Main cgi module for the xxxxxxxx system
author chris hobbs
written april 2005
**

import quixote
from quixote import enable_ptl
from quixote.server.cgi_server import run

Install the import hook that enables PTL modules.
enable_ptl()

import myPublisher

Enter the publishing main loop
run(myPublisher.createPublisher)

Quixote: A Cookbook, Revision 0.4 Nortel

APPENDIX C

Licence

Quixote isnot “public-domain” software. It is available for use in accordance with the
terms of its licence. Before using Quixote, ensure that the licence terms (below) are ac-
ceptable.

CNRI OPEN SOURCE LICENSE AGREEMENT FOR QUIXOTE-2.0
IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY.

BY COPYING, INSTALLING OR OTHERWISE USING QUIXOTE-2.0 SOFTWARE,
YOU ARE DEEMED TO HAVE AGREED TO BE BOUND BY THE TERMS AND
CONDITIONS OF THIS LICENSE AGREEMENT.

1. This LICENSE AGREEMENT is between Corporation for National Research Initia-
tives, having an office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI"),
and the Individual or Organization (“Licensee") copying, installing or otherwise us-
ing Quixote-2.0 software in source or binary form and its associated documentation
(“Quixote-2.0").

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants
Licensee a nonexclusive, royalty-free, world-wide license to reproduce, analyze, test,
perform and/or display publicly, prepare derivative works, distribute, and otherwise
use Quixote-2.0 alone or in any derivative version, provided, however, that CNRI’s
License Agreement and CNRI’s notice of copyright, i.e., “Copyright ©2005 Corpora-
tion for National Research Initiatives; All Rights Reserved" are retained in Quixote-
2.0 alone or in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates
Quixote-2.0, or any part thereof, and wants to make the derivative work available to
others as provided herein, then Licensee hereby agrees to include in any such work a
brief summary of the changes made to Quixote-2.0.

Nortel 29 Quixote: A Cookbook, Revision 0.4

30 Licence

4. CNRI is making Quixote-2.0 available to Licensee on an “AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.
BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
QUIXOTE-2.0 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF QUIXOTE-2.0 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL
DAMAGES OR LOSS AS A RESULT OF MODIFYING, DISTRIBUTING, OR
OTHERWISE USING QUIXOTE-2.0, OR ANY DERIVATIVE THEREOF, EVEN
IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its
terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law
of the United States, including without limitation the federal copyright law, and, to
the extent such U.S. federal law does not apply, by the law of the Commonwealth of
Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the fore-
going, with regard to derivative works based on Quixote-2.0 that incorporate non-
separable material that was previously distributed under the GNU General Public
License (GPL), the law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to Paragraphs 4, 5, and 7
of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Li-
censee. This License Agreement does not grant permission to use CNRI trademarks
or trade name in a trademark sense to endorse or promote products or services of
Licensee, or any third party.

8. By copying, installing or otherwise using Quixote-2.0, Licensee agrees to be bound
by the terms and conditions of this License Agreement.

Quixote: A Cookbook, Revision 0.4 Nortel

Bibliography

[WHIT] “White Paper: Quixote for Web Development”, available athttp://www.
quixote.ca/overview/paper.html

Nortel 31 Quixote: A Cookbook, Revision 0.4

http://www.quixote.ca/overview/paper.html
http://www.quixote.ca/overview/paper.html

Index

_q_exports,6
_q_index,6

ACCESS_LOG,8
add(),15
Apache,19

CGI, 8
clear_error()

on widget,11
clear_errors()

on form,15
COMPRESS_PAGES,8
Config Class,19
cross-site scripting,17

Directory Class,5, 6, 19
DISPLAY_EXCEPTIONS,8

enable_ptl(),16, 27
England

cricket team,6
ERROR_EMAIL,8
ERROR_LOG,8

FastCGI,8
FloatWidget,10
Form Class,7, 12, 19

constructor,13
history of,12
methods,15

Form.__init__,14
Form1,13
Form2,13
FORM_TOKENS,8

get_submit(),15
get_submit_widgets(),15
get_widget(),15

has_errors(),15

has_key(),15
HiddenWidget,13
HTML escaping,17

IntWidget,10
is_submitted(),15, 20

Licence,29
ListWidget,10
log(), 8

MAIL_DEBUG_ADDR, 8
MAIL_FROM, 8
MAIL_SERVER ,8
md5,22

OptionSelectWidget,10
Orr

Mike, 2

PTL, 4, 5, 16, 27
Publisher,5, 6

example,26
Publisher Class,19

q_lookup,6
Quixote

licence,29
mailing list,2

Quixote Classes
Directory,6
Form,7, 12
Widget,10

render(),10, 11, 20
Root Directory,7

example,22
run(),8, 19

SESSION_COOKIE_DOMAIN,8
SESSION_COOKIE_NAME,8

Nortel 32 Quixote: A Cookbook, Revision 0.4

33

SESSION_COOKIE_PATH,8
set_error(),15

on widget,11
set_hint(),12
set_title(),11
SubmitWidget,13

Tjoelker
Larry, 2, 7

upgrading.txt,8

Widget Classes,10

Nortel Quixote: A Cookbook, Revision 0.4

	Introduction
	This Document
	More Information
	Updates
	Disclaimer

	A Quixotic Survey
	The Quixotic Core
	General Structure
	URI Mapping to Methods
	The Publisher
	Configuration

	Widget and Form Classes
	Widget Classes
	Form Class

	The Python Templating Language
	Sequence of Events
	Example
	Creating a Root Directory Instance
	Creating a Publisher Instance
	Running Quixote

	Licence

